
pg. 1

PHP

Audience

This PHP course is designed for PHP programmers who are completely unaware of
PHP concepts but they have basic understanding on computer programming.

Prerequisites

Before proceeding with this course, you should have at least basic understanding of
computer programming, Internet, Database, and MySQL etc. is very helpful.

Table of Contents:

Introduction
➢ Environment Setup

➢ Syntax Overview

➢ Variable Types
➢ Date & Time
➢ Constants Types
➢ Operator Types
➢ Decision Making
➢ Loop Types
➢ Arrays
➢ Strings
➢ Web Concepts
➢ GET & POST Methods
➢ File Inclusion
➢ Files & I/O
➢ Functions
➢ Cookies
➢ Sessions
➢ Sending Emails using PHP
➢ File UploadingError! Reference source not found.
➢ Coding Standard

pg. 2

Introduction
The PHP Hypertext Preprocessor (PHP) is a programming language that allows web
developers to create dynamic content that interacts with databases. PHP is basically
used for developing web-based software applications. This course helps you to build
your base with PHP.

PHP started out as a small open-source project that evolved as more and more people
found out how useful it was. Rasmus Lerdorf unleashed the first version of PHP way
back in 1994.

• PHP is a recursive acronym for "PHP: Hypertext Preprocessor".
• PHP is a server side scripting language that is embedded in HTML. It is used to

manage dynamic content, databases, session tracking, even build entire e-
commerce sites.

• It is integrated with a number of popular databases, including MySQL,
PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.

• PHP is pleasingly zippy in its execution, especially when compiled as an Apache
module on the Unix side. The MySQL server, once started, executes even very
complex queries with huge result sets in record-setting time.

• PHP supports a large number of major protocols such as POP3, IMAP, and LDAP.
PHP4 added support for Java and distributed object architectures (COM and
CORBA), making n-tier development a possibility for the first time.

• PHP is forgiving: PHP language tries to be as forgiving as possible.
• PHP Syntax is C-Like.

Common uses of PHP
• PHP performs system functions, i.e. from files on a system it can create, open,

read, write, and close them.
• PHP can handle forms, i.e. gather data from files, save data to a file, through email

you can send data, return data to the user.
• You add, delete, modify elements within your database through PHP.
• Access cookies variables and set cookies.
• Using PHP, you can restrict users to access some pages of your website.
• It can encrypt data.

Characteristics of PHP

Five important characteristics make PHP's practical nature possible:
• Simplicity

• Efficiency

• Security

• Flexibility

• Familiarity

pg. 3

Applications of PHP

As mentioned before, PHP is one of the most widely used language over the web. I'm
going to list few of them here:

• PHP performs system functions, i.e. from files on a system it can create, open,
read, write, and close them.

• PHP can handle forms, i.e. gather data from files, save data to a file, through email
you can send data, return data to the user.

• You add, delete, modify elements within your database through PHP.
• Access cookies variables and set cookies.
• Using PHP, you can restrict users to access some pages of your website.
• It can encrypt data.

"Hello World" Script in PHP

To get a feel for PHP, first start with simple PHP scripts. Since "Hello, World!" is an
essential example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your
normal HTML (or XHTML if you're cutting-edge) you'll have PHP statements like this:

Line Code
1

2

3

4

5

6

7

8

<html>

<head>

 <title>Hello World</title>

</head>

<body>

 <?php echo "Hello, World!";?>

</body>

</html>

It will produce following result:

Hello, World!

If you examine the HTML output of the above example, you'll notice that the PHP code
is not present in the file sent from the server to your Web browser. All of the PHP present
in the Web page is processed and stripped from the page; the only thing returned to the
client from the Web server is pure HTML output.

All PHP code must be included inside one of the three special markup tags ATE are
recognised by the PHP Parser.

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language = "php"> PHP code goes here </script>

A most common tag is the <?php...?> and we will also use the same tag in this course.

From the next chapter we will start with PHP Environment Setup on your machine and
then we will dig out almost all concepts related to PHP to make you comfortable with the
PHP language.

pg. 4

Environment Setup
In order to develop and run PHP Web pages three vital components need to be installed
on your computer system.

• Web Server: PHP will work with virtually all Web Server software, including
Microsoft's Internet Information Server (IIS) but then most often used is freely
available Apache Server. Download Apache for free
here: https://httpd.apache.org/download.cgi

• Database: PHP will work with virtually all database software, including Oracle and
Sybase but most commonly used is freely available MySQL database. Download
MySQL for free here: https://www.mysql.com/downloads/

• PHP Parser: In order to process PHP script instructions a parser must be installed
to generate HTML output that can be sent to the Web Browser. This course will
guide you how to install PHP parser on your computer.

Installation

Even better if you can install XAMPP that come with all these main components (plus
others). Refer to the course setup guide.

Windows IIS Configuration

To configure IIS on your Windows machine you can refer your IIS Reference Manual
shipped along with IIS.

https://httpd.apache.org/download.cgi
https://www.mysql.com/downloads/

pg. 5

Syntax Overview
This chapter will give you an idea of very basic syntax of PHP and very important to
make your PHP foundation strong.

Escaping to PHP

The PHP parsing engine needs a way to differentiate PHP code from other elements in
the page. The mechanism for doing so is known as 'escaping to PHP'. There are four
ways to do this:

Canonical PHP tags

The most universally effective PHP tag style is:

<?php...?>

If you use this style, you can be positive that your tags will always be correctly interpreted.

Short-open (SGML-style) tags

Short or short-open tags look like this:

<?...?>

Short tags are, as one might expect, the shortest option You must do one of two things
to enable PHP to recognize the tags:

• Choose the --enable-short-tags configuration option when you're building PHP.
• Set the short_open_tag setting in your php.ini file to on. This option must be

disabled to parse XML with PHP because the same syntax is used for XML tags.

ASP-style tags

ASP-style tags mimic the tags used by Active Server Pages to delineate code blocks.
ASP-style tags look like this:
<%...%>

To use ASP-style tags, you will need to set the configuration option in your php.ini file.

HTML script tags

HTML script tags look like this:
<script language = "PHP">...</script>

pg. 6

Commenting PHP Code

A comment is the portion of a program that exists only for the human reader and stripped
out before displaying the programs result. There are two commenting formats in PHP:

Single-line comments: They are generally used for short explanations or notes relevant
to the local code. Here are the examples of single line comments.

Line Code
1

2

3

4

5

6

7

<?php

 # This is a comment, and

 # This is the second line of the comment

 // This is a comment too. Each style comments only

 print "An example with single line comments";

?>

Multi-lines printing: Here are the examples to print multiple lines in a single print
statement:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

<?php

 # First Example

 print <<<END

 This uses the "here document" syntax to output

 multiple lines with $variable interpolation. Note

 that the here document terminator must appear on a

 line with just a semicolon no extra whitespace!

 END;

 # Second Example

 print "This spans

 multiple lines. The newlines will be

 output as well";

?>

Multi-lines comments: They are generally used to provide pseudocode algorithms and
more detailed explanations when necessary. The multiline style of commenting is the
same as in C. Here are the example of multi lines comments.

Line Code
1

2

3

4

5

6

7

8

9

<?php

 /* This is a comment with multiline

 Author : Mohammad Mohtashim

 Purpose: Multiline Comments Demo

 Subject: PHP

 */

 print "An example with multi line comments";

?>

pg. 7

PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen, including spaces,
tabs, and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace
characters you have in a row.one whitespace character is the same as many such
characters.

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the
variable $four is equivalent:
Line Code

1

2

3

4

5

6

7

<?php

 $four = 2 + 2; // single spaces

 $four <tab>=<tab2><tab>+<tab>2 ; // spaces and tabs

 $four =

 2+

 2; // multiple lines

?>

PHP is case sensitive

Like most famous programming languages, PHP is a case sensitive language. Try out
following example:
Line Code

1

2

3

4

5

6

7

8

9

<html>

<body>

 <?php

 $capital = 67;

 print("Variable capital is $capital
");

 print("Variable CaPiTaL is $CaPiTaL
");

 ?>

</body>

</html>

This will produce the following result:
Variable capital is 67

Variable CaPiTaL is

Statements are expressions terminated by semicolons

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence
of valid PHP statements that is enclosed by the PHP tags is a valid PHP program. Here
is a typical statement in PHP, which in this case assigns a string of characters to a
variable called $greeting:
$greeting = "Welcome to PHP!";

pg. 8

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as numbers
(3.14159), strings (.two.), variables ($two), constants (TRUE), and the special words that
make up the syntax of PHP itself like if, else, while, for and so forth

Braces make blocks

Although statements cannot be combined like expressions, you can always put a
sequence of statements anywhere a statement can go by enclosing them in a set of curly
braces.

Here both statements are equivalent:
Line Code

1

2

3

4

5

6

7

8

9

<?php

 if (3 == 2 + 1)

 print("Good - I haven't totally lost my mind.
");

 if (3 == 2 + 1) {

 print("Good - I haven't totally");

 print("lost my mind.
");

 }

?>

Running PHP Script from Command Prompt

You can run your PHP script on your command prompt. Assuming you have following
content in test.php file

Line Code
1

2

3

<?php

 echo "Hello PHP!!!!!";

?>

Now run this script as command prompt as follows:
$ php test.php

It will produce the following result:
Hello PHP!!!!!

Hope now you have basic knowledge of PHP Syntax.

pg. 9

Variable Types
The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.
• All variables in PHP are denoted with a leading dollar sign ($).
• The value of a variable is the value of its most recent assignment.
• Variables are assigned with the = operator, with the variable on the left-hand side

and the expression to be evaluated on the right.
• Variables can, but do not need, to be declared before assignment.
• Variables in PHP do not have intrinsic types - a variable does not know in advance

whether it will be used to store a number or a string of characters.
• Variables used before they are assigned have default values.
• PHP does a good job of automatically converting types from one to another when

necessary.
• PHP variables are Perl-like.

PHP has a total of eight data types which we use to construct our variables:
• Integers: are whole numbers, without a decimal point, like 4195.
• Doubles: are floating-point numbers, like 3.14159 or 49.1.
• Booleans: have only two possible values either true or false.
• NULL: is a special type that only has one value: NULL.
• Strings: are sequences of characters, like 'PHP supports string operations.'
• Arrays: are named and indexed collections of other values.
• Objects: are instances of programmer-defined classes, which can package up

both other kinds of values and functions that are specific to the class.
• Resources: are special variables that hold references to resources external to

PHP (such as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the
compound types can package up other arbitrary values of arbitrary type, whereas the
simple types cannot.

We will explain only simple data type in this module. Array and Objects will be explained
separately.

pg. 10

Integers
They are whole numbers, without a decimal point, like 4195. They are the simplest type.
They correspond to simple whole numbers, both positive and negative. Integers can be
assigned to variables, or they can be used in expressions, like so:
Line Code

1

2

3
4

<?php

 $int_var = 12345;

 $another_int = -12345 + 12345;

?>

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format.
Decimal format is the default, octal integers are specified with a leading 0, and
hexadecimals have a leading 0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and
the smallest (most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles
They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal
places needed. For example, the code:
Line Code

1

2

3

4

5

6

7

<?php

 $many = 2.2888800;

 $many_2 = 2.2111200;

 $few = $many + $many_2;

 print("$many + $many_2 = $few
");

?>

It produces the following browser output:

2.28888 + 2.21112 = 4.5

Boolean
They have only two possible values either true or false. PHP provides a couple of
constants especially for use as Booleans: TRUE and FALSE, which can be used like so:

Line Code
1

2

3

4

5

6

<?php

 if (TRUE)

 print("This will always print
");

 else

 print("This will never print
");

?>

pg. 11

Interpreting other types as Booleans

Here are the rules for determine the "truth" of any value not already of the Boolean type:
• If the value is a number, it is false if exactly equal to zero and true otherwise.
• If the value is a string, it is false if the string is empty (has zero characters) or is

the string "0", and is true otherwise.
• Values of type NULL are always false.
• If the value is an array, it is false if it contains no other values, and it is true

otherwise. For an object, containing a value means having a member variable
that has been assigned a value.

• Valid resources are true (although some functions that return resources when they
are successful will return FALSE when unsuccessful).

• Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used
in a Boolean context.

Line Code
1

2

3

4

5

6

7

8

9

<?php

 $true_num = 3 + 0.14159;

 $true_str = "Tried and true"

 $true_array[49] = "An array element";

 $false_array = array();

 $false_null = NULL;

 $false_num = 999 - 999;

 $false_str = "";

?>

NULL

NULL is a special type that only has one value: NULL. To give a variable the NULL value,
simply assign it like this:
$my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive;
you could just as well have typed:
$my_var = null;

A variable that has been assigned NULL has the following properties:
• It evaluates to FALSE in a Boolean context.
• It returns FALSE when tested with IsSet() function.

pg. 12

Strings

They are sequences of characters, like "PHP supports string operations". Following are
valid examples of string

Line Code
1

2

3

4

5

6

<?php

 $string_1 = "This is a string in double quotes";

 $string_2 = 'This is a somewhat longer, singly quoted string';

 $string_39 = "This string has thirty-nine characters";

 $string_0 = ""; // a string with zero characters

?>

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace
variables with their values as well as specially interpreting certain character sequences.

Line Code
1

2

3

4

5

6

7

8

9

10

<?php

 $variable = "name";

 $literally = 'My $variable will not print!';

 print($literally);

 print "
";

 $literally = "My $variable will print!";

 print($literally);

?>

This will produce following result:
My $variable will not print!

My name will print

There are no artificial limits on string length - within the bounds of available memory, you
ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the
following two ways by PHP:

• Certain character sequences beginning with backslash (\) are replaced with
special characters

• Variable names (starting with $) are replaced with string representations of their
values.

The escape-sequence replacements are:
• \n is replaced by the newline character

• \r is replaced by the carriage-return character

• \t is replaced by the tab character

• \$ is replaced by the dollar sign itself ($)

• \" is replaced by a single double-quote (")

• \\ is replaced by a single backslash (\)

pg. 13

Here Document

You can assign multiple lines to a single string variable using here document:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<?php

 $channel =<<<_XML_

 <channel>

 <title>What's For Dinner</title>

 <link>http://menu.example.com/ </link>

 <description>Choose what to eat tonight.</description>

 </channel>

 XML;

 echo <<<END

 This uses the "here document" syntax to output

 multiple lines with Variable interpolation. Note

 that the here document terminator must appear on a

 line with just a semicolon. no extra whitespace!

 END;

 print $channel;

?>

This will produce following result:

Variable Scope
Scope can be defined as the range of availability a variable has to the program in which
it is declared. PHP variables can be one of four scope types:

• Local variables
• Function parameters
• Global variables
• Static variables

Variable Naming
Rules for naming a variable is:

• Variable names must begin with a letter or underscore character.
• A variable name can consist of numbers, letters, underscores but you cannot use

characters like + , - , % , (,) . & , etc

There is no size limit for variables.

pg. 14

Date & Time
Dates are so much part of everyday life that it becomes easy to work with them without
thinking. PHP also provides powerful tools for date arithmetic that make manipulating
dates easy.

Getting the Time Stamp with time()

PHP's time() function gives you all the information that you need about the current date
and time. It requires no arguments but returns an integer.

The integer returned by time() represents the number of seconds elapsed since midnight
GMT on January 1, 1970. This moment is known as the UNIX epoch, and the number of
seconds that have elapsed since then is referred to as a time stamp.

Line Code
1

2

3

<?php

 print time();

?>

This will produce the following result:
1480930103

This is something difficult to understand. But PHP offers excellent tools to convert a time
stamp into a form that humans are comfortable with.

Converting a Time Stamp with getdate()

The function getdate() optionally accepts a time stamp and returns an associative array
containing information about the date. If you omit the time stamp, it works with the current
time stamp as returned by time().

Following table lists the elements contained in the array returned by getdate().

No. Key & Description Example

1 seconds
Seconds past the minutes (0-59)

20

2 minutes
Minutes past the hour (0 - 59)

29

3 hours
Hours of the day (0 - 23)

22

4 mday
Day of the month (1 - 31)

11

pg. 15

5 wday
Day of the week (0 - 6)

4

6 mon
Month of the year (1 - 12)

7

7 year
Year (4 digits)

1997

8 yday
Day of year (0 - 365)

19

9 weekday
Day of the week

Thursday

10 month
Month of the year

January

11 0
Timestamp

948370048

Now you have complete control over date and time. You can format this date and time
in whatever format you want.

Example

Try out following example:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

<?php

 $date_array = getdate();

 foreach ($date_array as $key => $val){

 print "$key = $val
";

 }

 $formated_date = "Today's date: ";

 $formated_date .= $date_array['mday'] . "/";

 $formated_date .= $date_array['mon'] . "/";

 $formated_date .= $date_array['year'];

 print $formated_date;

?>

This will produce following result:
seconds = 10

minutes = 29

hours = 9

mday = 5

wday = 1

mon = 12

year = 2016

pg. 16

yday = 339

weekday = Monday

month = December

0 = 1480930150

Today's date: 5/12/2016

Converting a Time Stamp with date()

The date() function returns a formatted string representing a date. You can exercise an
enormous amount of control over the format that date() returns with a string argument
that you must pass to it.

date(format,timestamp)

The date() optionally accepts a time stamp if omitted then current date and time will be
used. Any other data you include in the format string passed to date() will be included in
the return value.

Following table lists the codes that a format string can contain:

No. Format Description Example

1 a 'am' or 'pm' lowercase pm

2 A 'AM' or 'PM' uppercase PM

3 d Day of month, a number with leading zeroes 20

4 D Day of week (three letters) Thu

5 F Month name January

6 h Hour (12-hour format - leading zeroes) 12

7 H Hour (24-hour format - leading zeroes) 22

8 g Hour (12-hour format - no leading zeroes) 12

9 G Hour (24-hour format - no leading zeroes) 22

10 i Minutes (0 - 59) 23

11 j Day of the month (no leading zeroes 20

12 l (Lower
'L')

Day of the week Thursday

13 L Leap year ('1' for yes, '0' for no) 1

pg. 17

14 m Month of year (number - leading zeroes) 1

15 M Month of year (three letters) Jan

16 r The RFC 2822 formatted date Thu, 21 Dec 2000

16:01:07 +0200

17 n Month of year (number - no leading zeroes) 2

18 s Seconds of hour 20

19 U Time stamp 948372444

20 y Year (two digits) 06

21 Y Year (four digits) 2006

22 z Day of year (0 - 365) 206

23 Z Offset in seconds from GMT +5

Example

Try out following example:
Line Code

1

2

3

4

5

6

<?php

 print date("m/d/y G.i:s
", time());

 echo "
";

 print "Today is ";

 print date("j of F Y, \a\\t g.i a", time());

?>

This will produce following result:
12/05/16 9:29:47

Today is 5 2016f December 2016 at 9:29 am

Hope you have good understanding on how to format date and time according to your
requirement.

pg. 18

Constants Types
A constant is a name or an identifier for a simple value. A constant value cannot change
during the execution of the script. By default, a constant is case-sensitive. By convention,
constant identifiers are always uppercase. A constant name starts with a letter or
underscore, followed by any number of letters, numbers, or underscores. If you have
defined a constant, it can never be changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a
constant, you have to simply specifying its name. Unlike with variables, you do not need
to have a constant with a $. You can also use the function constant() to read a constant's
value if you wish to obtain the constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its
name, i.e. It is stored in a variable or returned by a function.

constant() example
Line Code

1

2

3

4

5

6

<?php

 define("MINSIZE", 50);

 echo MINSIZE;

 echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are
• There is no need to write a dollar sign ($) before a constant, where as in Variable

one has to write a dollar sign.
• Constants cannot be defined by simple assignment, they may only be defined

using the define() function.
• Constants may be defined and accessed anywhere without regard to variable

scoping rules.
• Once the Constants have been set, may not be redefined or undefined.

pg. 19

Valid and invalid constant names
Line Code

1

2

3

4

5

6

7

8

9

10

<?php

 // Valid constant names

 define("ONE", "first thing");

 define("TWO2", "second thing");

 define("THREE_3", "third thing");

 define("__THREE__", "third value");

 // Invalid constant names

 define("2TWO", "second thing");

?>

PHP Magic constants

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For
example, the value of __LINE__ depends on the line that it's used on in your script.
These special constants are case-insensitive and are as follows:

A few "magical" PHP constants are given below:

No. Name & Description

1 __LINE__
The current line number of the file.

2 __FILE__
The full path and filename of the file. If used inside an include,the name of the
included file is returned. Since PHP 4.0.2, __FILE__ always contains an
absolute path whereas in older versions it contained relative path under some
circumstances.

3 __FUNCTION__
The function name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the
function name as it was declared (case-sensitive). In PHP 4 its value is always
lowercased.

4 __CLASS__
The class name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the
class name as it was declared (case-sensitive). In PHP 4 its value is always
lowercased.

5 __METHOD__
The class method name. (Added in PHP 5.0.0) The method name is returned as
it was declared (case-sensitive).

pg. 20

Operator Types
What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9.
Here 4 and 5 are called operands and + is called operator. PHP language supports
following type of operators.

• Arithmetic Operators
• Comparison Operators
• Logical (or Relational) Operators
• Assignment Operators
• Conditional (or ternary) Operators

Let’s have a look on all operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by PHP language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by one A-- will give 9

Comparison Operators

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are equal or not, if yes

then condition becomes true.

(A == B) is not true.

!= Checks if the value of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B) is true.

pg. 21

> Checks if the value of left operand is greater than the value

of right operand, if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to

the value of right operand, if yes then condition becomes

true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is true.

Logical Operators

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

and Called Logical AND operator. If both the operands are true

then condition becomes true.

(A and B) is true.

or Called Logical OR Operator. If any of the two operands are

non zero then condition becomes true.

(A or B) is true.

&& Called Logical AND operator. If both the operands are non

zero then condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of the two operands are

non zero then condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the logical state

of its operand. If a condition is true then Logical NOT operator

will make false.

!(A && B) is false.

pg. 22

Assignment Operators

There are following assignment operators supported by PHP language:

Operator Description Example

= Simple assignment operator, Assigns values from right side

operands to left side operand

C = A + B will

assign value of A

+ B into C

+= Add AND assignment operator, It adds right operand to the left

operand and assign the result to left operand

C += A is

equivalent to C =

C + A

-= Subtract AND assignment operator, It subtracts right operand

from the left operand and assign the result to left operand

C -= A is

equivalent to C =

C - A

*= Multiply AND assignment operator, It multiplies right operand

with the left operand and assign the result to left operand

C *= A is

equivalent to C =

C * A

/= Divide AND assignment operator, It divides left operand with

the right operand and assign the result to left operand

C /= A is

equivalent to C =

C / A

%= Modulus AND assignment operator, It takes modulus using two

operands and assign the result to left operand

C %= A is

equivalent to C =

C % A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an
expression for a true or false value and then execute one of the two given statements
depending upon the result of the evaluation. The conditional operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X : Otherwise value Y

pg. 23

Operators Categories

All the operators we have discussed above can be categorised into following categories:
• Unary prefix operators, which precede a single operand.
• Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.
• The conditional operator (a ternary operator), which takes three operands and

evaluates either the second or third expression, depending on the evaluation of
the first expression.

• Assignment operators, which assign a value to a variable.

Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others;
for example, the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher
precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with
the lowest appear at the bottom. Within an expression, higher precedence operators will
be evaluated first.

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

pg. 24

Decision Making
The if, elseif ...else and switch statements are used to take decision based on the
different condition.

You can use conditional statements in your code to make your decisions. PHP supports
following three decision making statements:

• if...else statement: use this statement if you want to execute a set of code when
a condition is true and another if the condition is not true

• elseif statement: is used with the if...else statement to execute a set of code
if one of the several condition is true

• switch statement: is used if you want to select one of many blocks of code to be
executed, use the Switch statement. The switch statement is used to avoid long
blocks of if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is
false, use the if....else statement.

Syntax
if (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

pg. 25

Example

The following example will output "Have a nice weekend!" if the current day is Friday,
Otherwise, it will output "Have a nice day!":
Line Code

1

2

3

4

5

6

7

8

9

10

11

<html>

<body>

 <?php

 $d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 else

 echo "Have a nice day!";

 ?>

</body>

</html>

It will produce the following result:
Have a nice weekend!

The ElseIf Statement
If you want to execute some code if one of the several conditions are true use the elseif
statement

Syntax
if (condition)

 code to be executed if condition is true;

elseif (condition)

 code to be executed if condition is true;

else

 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday,
and "Have a nice Sunday!" if the current day is Sunday. Otherwise, it will output "Have
a nice day!":
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

<html>

<body>

 <?php

$d = date("D");

 if ($d == "Fri")

 echo "Have a nice weekend!";

 elseif ($d == "Sun")

 echo "Have a nice Sunday!";

 else

 echo "Have a nice day!";

 ?>

</body>

</html>

It will produce the following result:
Have a nice Weekend!

pg. 26

The Switch Statement
If you want to select one of many blocks of code to be executed, use the Switch
statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax
switch (expression){

 case label1:

 code to be executed if expression = label1;

 break;

 case label2:

 code to be executed if expression = label2;

 break;

 default:

 code to be executed if expression is different from both label1 and

 label2;

}

Example

The switch statement works in an unusual way. First it evaluates given expression then
seeks a label to match the resulting value. If a matching value is found then the code
associated with the matching label will be executed or if none of the lable matches then
statement will execute any specified default code.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

<html>

<body>

 <?php

 $d = date("D");

 switch ($d){

 case "Mon": echo "Today is Monday";

 break;

 case "Tue": echo "Today is Tuesday";

 break;

 case "Wed": echo "Today is Wednesday";

 break;

 case "Thu": echo "Today is Thursday";

 break;

 case "Fri": echo "Today is Friday";

 break;

 case "Sat": echo "Today is Saturday";

 break;

 case "Sun": echo "Today is Sunday";

 break;

 default: echo "Wonder which day is this ?";

 }

 ?>

</body>

</html>

It will produce the following result:
Today is Monday

pg. 27

Loop Types
Loops in PHP are used to execute the same block of code a specified number of times.
PHP supports following four loop types.

• for: loops through a block of code a specified number of times.
• while: loops through a block of code if and as long as a specified condition is true.
• do...while: loops through a block of code once, and then repeats the loop as long

as a special condition is true.
• foreach: loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a
statement or a block of statements.

Syntax
for (initialization; condition; increment){

 code to be executed;

}

The initializer is used to set the start value for the counter of the number of loop iterations.
A variable may be declared here for this purpose and it is traditional to name it $i.

pg. 28

Example

The following example makes five iterations and changes the assigned value of two
variables on each pass of the loop:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<html>

<body>

 <?php

 $a = 0;

 $b = 0;

 for($i = 0; $i<5; $i++) {

 $a += 10;

 $b += 5;

 }

 echo ("At the end of the loop a = $a and b = $b");

 ?>

</body>

</html>

This will produce the following result:
At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of
code if and as long as a test expression is
true.

If the test expression is true then the code
block will be executed. After the code has
executed the test expression will again be
evaluated and the loop will continue until the
test expression is found to be false.

Syntax
while (condition) {

 code to be executed;

}

pg. 29

Example

This example decrements a variable value on each iteration of the loop and the counter
increments until it reaches 10 when the evaluation is false and the loop ends.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<html>

<body>

 <?php

 $i = 0;

 $num = 50;

 while($i < 10) {

 $num--;

 $i++;

 }

 echo ("Loop stopped at i = $i and num = $num");

 ?>

</body>

</html>

This will produce the following result:
Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat
the loop as long as a condition is true.

Syntax
do {

 code to be executed;

}

while (condition);

Example

The following example will increment the value of i at least once, and it will continue
incrementing the variable i as long as it has a value of less than 10:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

<html>

<body>

 <?php

 $i = 0;

 $num = 0;

 do {

 $i++;

 }while($i < 10);

 echo ("Loop stopped at i = $i");

 ?>

</body>

</html>

This will produce the following result:
Loop stopped at i = 10

pg. 30

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the
current array element is assigned to $value and the array pointer is moved by one and
in the next pass next element will be processed.

Syntax
foreach (array as value) {

 code to be executed;

}

Example

Try out following example to list out the values of an array.

Line Code
1

2

3

4

5

6

7

8

9

10

11

<html>

<body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 echo "Value is $value
";

 }

 ?>

</body>

</html>

This will produce the following result:
Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

The break statement

The PHP break keyword is used to
terminate the execution of a loop
prematurely.

The break statement is situated inside the
statement block. It gives you full control and
whenever you want to exit from the loop you
can come out. After coming out of a loop
immediate statement to the loop will be
executed.

pg. 31

Example

In the following example condition test becomes true when the counter value reaches 3
and loop terminates.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

<html>

<body>

 <?php

 $i = 0;

 while($i < 10) {

 $i++;

 if($i == 3) break;

 }

 echo ("Loop stopped at i = $i");

 ?>

</body>

</html>

This will produce the following result:
Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not
terminate the loop.

Just like the break statement the continue statement is situated inside the statement
block containing the code that the loop executes, preceded by a conditional test. For the
pass encountering continue statement, rest of the loop code is skipped and next pass
starts.

pg. 32

Example

In the following example loop prints the value of array but for which condition becomes
true it just skips the code and next value is printed.
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

<html>

<body>

 <?php

 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {

 if($value == 3) continue;

 echo "Value is $value
";

 }

 ?>

</body>

</html>

This will produce the following result:
Value is 1

Value is 2

Value is 4

Value is 5

pg. 33

Arrays
An array is a data structure that stores one or more similar type of values in a single
value. For example, if you want to store 100 numbers then instead of defining 100
variables it’s easy to define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c
which is called array index.

• Numeric array: An array with a numeric index. Values are stored and accessed
in linear fashion.

• Associative array: An array with strings as index. This store element values in
association with key values rather than in a strict linear index order.

• Multidimensional array: An array containing one or more arrays and values are
accessed using multiple indices

NOTE: Built-in array functions is given in function reference PHP Array Functions

Numeric Array

These arrays can store numbers, strings and any object but their index will be
represented by numbers. By default, array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

Here we have used array() function to create array. This function is explained in function
reference.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<html>

<body>

 <?php

 /* First method to create array. */

 $numbers = array(1, 2, 3, 4, 5);

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 /* Second method to create array. */

 $numbers[0] = "one";

 $numbers[1] = "two";

 $numbers[2] = "three";

 $numbers[3] = "four";

 $numbers[4] = "five";

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 ?>

</body>

</html>

https://www.php.net/manual/en/ref.array.php

pg. 34

This will produce the following result:
Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

Associative Arrays
The associative arrays are very similar to numeric arrays in term of functionality but they
are different in terms of their index. Associative array will have their index as string so
that you can establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be
the best choice. Instead, we could use the employee names as the keys in our
associative array, and the value would be their respective salary.

NOTE: Don't keep associative array inside double quote while printing otherwise it would
not return any value.

Example

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

<html>

<body>

 <?php

$salaries = array("mohammad"=>2000, "qadir"=>1000, "zara"=>500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 /* Another method to create Associative Array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

</body>

</html>

This will produce the following result:
Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

pg. 35

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each
element in the sub-array can be an array, and so on. Values in the multi-dimensional
array are accessed using multiple indexes.

Example

In this example we create a two-dimensional array to store marks of three students in
three subjects:

This example is an associative array, you can create numeric array in the same fashion.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<html>

<body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

</body>

</html>

This will produce the following result:
Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

pg. 36

Strings
They are sequences of characters, like "PHP supports string operations".

NOTE: Built-in string functions is given in function reference PHP String Functions

Following are valid examples of string:
$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace
variables with their values as well as specially interpreting certain character sequences.

Line Code
1

2

3

4

5

6

7

8

9

10

11

<?php

 $variable = "name";

 $literally = 'My $variable will not print!\\n';

 print($literally);

 print "
";

 $literally = "My $variable will print!\\n";

 print($literally);

?>

This will produce the following result:
My $variable will not print!\n

My name will print!\n

There are no artificial limits on string length - within the bounds of available memory, you
ought to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the
following two ways by PHP:

• Certain character sequences beginning with backslash (\) are replaced with
special characters

• Variable names (starting with $) are replaced with string representations of their
values.

The escape-sequence replacements are:
• \n is replaced by the newline character

• \r is replaced by the carriage-return character

• \t is replaced by the tab character

• \$ is replaced by the dollar sign itself ($)

• \" is replaced by a single double-quote (")

• \\ is replaced by a single backslash (\)

http://in.php.net/manual/en/ref.strings.php

pg. 37

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator:
Line Code

1

2

3

4

5

6

<?php

 $string1="Hello World";

 $string2="1234";

 echo $string1 . " " . $string2;

?>

This will produce the following result:
Hello World 1234

If we look at the code above you see that we used the concatenation operator two times.
This is because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty
space, to separate the two variables.

Using the strlen() function
The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":
Line Code

1

2

3

<?php

 echo strlen("Hello world!");

?>

This will produce the following result:
12

The length of a string is often used in loops or other functions, when it is important to
know when the string ends. (i.e. in a loop, we would want to stop the loop after the last
character in the string)

Using the strpos() function
The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If
no match is found, it will return FALSE.

Let's see if we can find the string "world" in our string:
Line Code

1

2

3

<?php

 echo strpos("Hello world!","world");

?>

This will produce the following result:
 6

pg. 38

Web Concepts
This session demonstrates how PHP can provide dynamic content according to browser
type, randomly generated numbers or User Input. It also demonstrated how the client
browser can be redirected.

Identifying Browser & Platform

PHP creates some useful environment variables that can be seen in the phpinfo.php
page that was used to setup the PHP environment.

One of the environment variables set by PHP is HTTP_USER_AGENT which identifies
the user's browser and operating system.

PHP provides a function getenv() to access the value of all the environment variables.
The information contained in the HTTP_USER_AGENT environment variable can be
used to create dynamic content appropriate to the browser.

Following example demonstrates how you can identify a client browser and operating
system.

NOTE: The reference of preg_match() you can find in Official Site.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

<html>

<body>

 <?php

 function getBrowser() {

 $u_agent = $_SERVER['HTTP_USER_AGENT'];

 $bname = 'Unknown';

 $platform = 'Unknown';

 $version = "";

 //First get the platform?

 if (preg_match('/linux/i', $u_agent)) {

 $platform = 'linux';

 }elseif (preg_match('/macintosh|mac os x/i', $u_agent)) {

 $platform = 'mac';

 }elseif (preg_match('/windows|win32/i', $u_agent)) {

 $platform = 'windows';

 }

 // Next get the name of the useragent yes seperately and for

 // good reason

 if(preg_match('/MSIE/i',$u_agent) &&

 !preg_match('/Opera/i',$u_agent)) {

 $bname = 'Internet Explorer';

 $ub = "MSIE";

 } elseif(preg_match('/Firefox/i',$u_agent)) {

 $bname = 'Mozilla Firefox';

 $ub = "Firefox";

 } elseif(preg_match('/Chrome/i',$u_agent)) {

 $bname = 'Google Chrome';

 $ub = "Chrome";

https://www.php.net/manual/en/function.preg-match.php

pg. 39

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

 }elseif(preg_match('/Safari/i',$u_agent)) {

 $bname = 'Apple Safari';

 $ub = "Safari";

 }elseif(preg_match('/Opera/i',$u_agent)) {

 $bname = 'Opera';

 $ub = "Opera";

 }elseif(preg_match('/Netscape/i',$u_agent)) {

 $bname = 'Netscape';

 $ub = "Netscape";

 }

 // finally get the correct version number

 $known = array('Version', $ub, 'other');

 $pattern = '#(?<browser>' . join('|', $known) .

 ')[/]+(?<version>[0-9.|a-zA-Z.]*)#';

 if (!preg_match_all($pattern, $u_agent, $matches)) {

 // we have no matching number just continue

 }

 // see how many we have

 $i = count($matches['browser']);

 if ($i != 1) {

 //we will have two since we are not using 'other' argument yet

 //see if version is before or after the name

 if (strripos($u_agent,"Version") < strripos($u_agent,$ub)){

 $version= $matches['version'][0];

 }else {

 $version= $matches['version'][1];

 }

 }else {

 $version= $matches['version'][0];

 }

 // check if we have a number

 if ($version == null || $version == "") {$version = "?";}

 return array(

 'userAgent' => $u_agent,

 'name' => $bname,

 'version' => $version,

 'platform' => $platform,

 'pattern' => $pattern

);

 }

 // now try it

 $ua = getBrowser();

 $yourbrowser = "Your browser: " . $ua['name'] . " " .

 $ua['version'] . " on " .$ua['platform'] .

 " reports:
" . $ua['userAgent'];

 print_r($yourbrowser);

 ?>

</body>

</html>

pg. 40

This is producing following result on my machine. This result may be different for your
computer depending on what you are using.

It will produce the following result:
Your browser: Google Chrome 91.0.4472.101 on windows reports:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36

Display Images Randomly

The PHP rand() function is used to generate a random number.i This function can
generate numbers with-in a given range. The random number generator should be
seeded to prevent a regular pattern of numbers being generated. This is achieved using
the srand() function that specifies the seed number as its argument.

Following example demonstrates how you can display different image each time out of
four images:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<html>

<body>

<?php

 $num = rand(1, 4);

 switch($num) {

 case 1: $image_file = "./images/logo.jpg";

 break;

 case 2: $image_file = "./images/PHP.jpg";

 break;

 case 3: $image_file = "./images/logo.jpg";

 break;

 case 4: $image_file = "./images/php.jpg";

 break;

 }

 echo "Random Image : ";

 ?>

</body>

</html>

It will produce the following result:

pg. 41

Using HTML Forms

The most important thing to notice when dealing with HTML forms and PHP is that any
form element in an HTML page will automatically be available to your PHP scripts.

Try out following example by putting the source code in test.php script.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<?php

 if($_POST["name"] || $_POST["age"]) {

 if (preg_match("/[^A-Za-z'-]/",$_POST['name'])) {

 die ("invalid name and name should be alpha");

 }

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

</body>

</html>

It will produce the following result:

• The PHP default variable $_PHP_SELF is used for the PHP script name and
when you click "submit" button then same PHP script will be called and will
produce following result:

• The method = "POST" is used to post user data to the server script. There are two
methods of posting data to the server script which are discussed in PHP GET &
POST chapter.

https://www.tutorialspoint.com/php/php_get_post.htm
https://www.tutorialspoint.com/php/php_get_post.htm

pg. 42

Browser Redirection

The PHP header() function supplies raw HTTP headers to the browser and can be used
to redirect it to another location. The redirection script should be at the very top of the
page to prevent any other part of the page from loading.

The target is specified by the Location: header as the argument to the header() function.
After calling this function the exit() function can be used to halt parsing of rest of the
code.

Following example demonstrates how you can redirect a browser request to another web
page. Try out this example by putting the source code in test.php script.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

<?php

 if($_POST["location"]) {

 $location = $_POST["location"];

 header("Location:$location");

 exit();

 }

?>

<html>

<body>

 <p>Choose a site to visit :</p>

 <form action = "<?php $_SERVER['PHP_SELF'] ?>" method ="POST">

 <select name = "location">.

 <option value = "https://se001php.azurewebsites.net/">

 PHP Course Supporting Site

 </option>

 <option value = "http://www.google.com">

 Google Search Page

 </option>

 </select>

 <input type = "submit" />

 </form>

</body>

</html>

It will produce the following result:

pg. 43

GET & POST Methods
There are two ways the browser client can send information to the web server.

• The GET Method
• The POST Method

Before the browser sends the information, it encodes it using a scheme called URL
encoding. In this scheme, name/value pairs are joined with equal signs and different
pairs are separated by the ampersand.

name1=value1&name2=value2&name3=value3

Spaces are removed and replaced with the + character and any other nonalphanumeric
characters are replaced with a hexadecimal values. After the information is encoded it is
sent to the server.

The GET Method

The GET method sends the encoded user information appended to the page request.
The page and the encoded information are separated by the ? character.

http://www.test.com/index.htm?name1=value1&name2=value2

• The GET method produces a long string that appears in your server logs, in the
browser's Location: box.

• The GET method is restricted to send upto 1024 characters only.
• Never use GET method if you have password or other sensitive information to be

sent to the server.
• GET can't be used to send binary data, like images or word documents, to the

server.
• The data sent by GET method can be accessed using QUERY_STRING

environment variable.
• The PHP provides $_GET associative array to access all the sent information

using GET method.

Try out following example by putting the source code in test.php script.
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<?php

 if($_GET["name"] || $_GET["age"]) {

 echo "Welcome ". $_GET['name']. "
";

 echo "You are ". $_GET['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action = "<?php $_PHP_SELF ?>" method = "GET">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

</body>

</html>

pg. 44

It will produce the following result:

The POST Method

The POST method transfers information via HTTP headers. The information is encoded
as described in case of GET method and put into a header called QUERY_STRING.

• The POST method does not have any restriction on data size to be sent.
• The POST method can be used to send ASCII as well as binary data.
• The data sent by POST method goes through HTTP header so security depends

on HTTP protocol. By using Secure HTTP you can make sure that your
information is secure.

• The PHP provides $_POST associative array to access all the sent information
using POST method.

Try out following example by putting the source code in test.php script.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<?php

 if($_POST["name"] || $_POST["age"]) {

 if (preg_match("/[^A-Za-z'-]/",$_POST['name'])) {

 die ("invalid name and name should be alpha");

 }

 echo "Welcome ". $_POST['name']. "
";

 echo "You are ". $_POST['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

</body>

</html>

It will produce the following result:

pg. 45

The $_REQUEST variable

The PHP $_REQUEST variable contains the contents of both $_GET, $_POST, and
$_COOKIE. We will discuss $_COOKIE variable when we will explain about cookies.

The PHP $_REQUEST variable can be used to get the result from form data sent with
both the GET and POST methods.

Try out following example by putting the source code in test.php script.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<?php

 if($_REQUEST["name"] || $_REQUEST["age"]) {

 echo "Welcome ". $_REQUEST['name']. "
";

 echo "You are ". $_REQUEST['age']. " years old.";

 exit();

 }

?>

<html>

<body>

 <form action = "<?php $_PHP_SELF ?>" method = "POST">

 Name: <input type = "text" name = "name" />

 Age: <input type = "text" name = "age" />

 <input type = "submit" />

 </form>

</body>

</html>

Here $_PHP_SELF variable contains the name of self script in which it is being called.

It will produce the following result:

pg. 46

File Inclusion
You can include the content of a PHP file into another PHP file before the server
executes it. There are two PHP functions which can be used to included one PHP file
into another PHP file.

• The include() Function

• The require() Function

This is a strong point of PHP which helps in creating functions, headers, footers, or
elements that can be reused on multiple pages. This will help developers to make it easy
to change the layout of complete website with minimal effort. If there is any change
required then instead of changing thousand of files just change included file.

The include() Function

The include() function takes all the text in a specified file and copies it into the file that
uses the include function. If there is any problem in loading a file then
the include() function generates a warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file
menu.php with the following content.

Home -

Reference -

About -

Contact

Now create as many pages as you like and include this file to create header. For example,
now your test.php file can have following content.

Line Code
1

2

3

4

5

6

<html>

<body>

 <?php include("menu.php"); ?>

 <p>This is an example to show how to include PHP file!</p>

</body>

</html>

It will produce the following result:

pg. 47

The require() Function

The require() function takes all the text in a specified file and copies it into the file that
uses the include function. If there is any problem in loading a file then
the require() function generates a fatal error and halt the execution of the script.

So there is no difference in require() and include() except they handle error conditions.
It is recommended to use the require() function instead of include(), because scripts
should not continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same result.
But if you will try following two examples where file does not exist then you will get
different results.

Line Code
1

2

3

4

5

6

<html>

<body>

 <?php include("xxmenu.php"); ?>

 <p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

This will produce the following result:
This is an example to show how to include wrong PHP file!

Now lets try same example with require() function.

Line Code
1

2

3

4

5

6

<html>

<body>

 <?php require("xxmenu.php"); ?>

 <p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

This time file execution halts and nothing is displayed.

NOTE: You may get plain warning messages or fatal error messages or nothing at all.
This depends on your PHP Server configuration.

pg. 48

Files & I/O
This chapter will explain following functions related to files:

• Opening a file

• Reading a file

• Writing a file

• Closing a file

Opening and Closing Files

The PHP fopen() function is used to open a file. It requires two arguments stating first
the file name and then mode in which to operate.

File modes can be specified as one of the six options in this table.

No. Mode Purpose

1 r Opens the file for reading only.
Places the file pointer at the beginning of the file.

2 r+

Opens the file for reading and writing.
Places the file pointer at the beginning of the file.

3 w

Opens the file for writing only.
Places the file pointer at the beginning of the file.
and truncates the file to zero length. If files does not
exist then it attempts to create a file.

4 w+ Opens the file for reading and writing only.
Places the file pointer at the beginning of the file.
and truncates the file to zero length. If files does not
exist then it attempts to create a file.

5 a

Opens the file for writing only.
Places the file pointer at the end of the file.
If files do not exist then it attempts to create a file.

6 a+

Opens the file for reading and writing only.
Places the file pointer at the end of the file.
If files does not exist then it attempts to create a file.

If an attempt to open a file fails then fopen returns a value of false otherwise it returns
a file pointer which is used for further reading or writing to that file.

After making a changes to the opened file it is important to close it with
the fclose() function. The fclose() function requires a file pointer as its argument and
then returns true when the closure succeeds or false if it fails.

pg. 49

Reading a file

Once a file is opened using fopen() function it can be read with a function called fread().
This function requires two arguments. These must be the file pointer and the length of
the file expressed in bytes.

The files length can be found using the filesize() function which takes the file name as
its argument and returns the size of the file expressed in bytes.

So here are the steps required to read a file with PHP.
• Open a file using fopen() function.
• Get the file's length using filesize() function.
• Read the file's content using fread() function.
• Close the file with fclose() function.

The following example assigns the content of a text file to a variable then displays those
contents on the web page.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<html>

<head>

 <title>Reading a file using PHP</title>

</head>

<body>

 <?php

 $filename = "tmp.txt";

 $file = fopen($filename, "r");

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

 echo ("File size : $filesize bytes");

 echo ("<pre>$filetext</pre>");

 ?>

</body>

</html>

It will produce the following result:

pg. 50

Writing a file

A new file can be written or text can be appended to an existing file using the
PHP fwrite() function. This function requires two arguments specifying a file
pointer and the string of data that is to be written. Optionally a third integer argument
can be included to specify the length of the data to write. If the third argument is included,
writing would will stop after the specified length has been reached.

The following example creates a new text file then writes a short text heading inside it.
After closing this file its existence is confirmed using file_exist() function which takes file
name as an argument

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

<?php

 $filename = "/home/user/guest/newfile.txt";

 $file = fopen($filename, "w");

 if($file == false) {

 echo ("Error in opening new file");

 exit();

 }

 fwrite($file, "This is a simple test\n");

 fclose($file);

?>

<html>

<head>

 <title>Writing a file using PHP</title>

</head>

<body>

 <?php

 $filename = "newfile.txt";

 $file = fopen($filename, "r");

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

 echo ("File size : $filesize bytes");

 echo ("$filetext");

 echo("file name: $filename");

 ?>

</body>

</html>

It will produce the following result:

pg. 51

Functions
PHP functions are similar to other programming languages. A function is a piece of code
which takes one more input in the form of parameter and does some processing and
returns a value.

You already have seen many functions like fopen() and fread() etc. They are built-in
functions but PHP gives you option to create your own functions as well.

There are two parts which should be clear to you:
• Creating a PHP Function

• Calling a PHP Function

In fact, you hardly need to create your own PHP function because there are already more
than 1000 of built-in library functions created for different area and you just need to call
them according to your requirement.

Please refer to Official Function Reference for a complete set of useful functions.

Creating PHP Function
It’s very easy to create your own PHP function. Suppose you want to create a PHP
function which will simply write a simple message on your browser when you will call it.
Following example creates a function called writeMessage() and then calls it just after
creating it.

Note that while creating a function its name should start with keyword function and all
the PHP code should be put inside { and } braces as shown in the following example
below:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<html>

<head>

 <title>Writing PHP Function</title>

</head>

<body>

 <?php

 /* Defining a PHP Function */

 function writeMessage() {

 echo "You are really a nice person, Have a nice time!";

 }

 /* Calling a PHP Function */

 writeMessage();

 ?>

</body>

</html>

This will display following result:
You are really a nice person, Have a nice time!

https://www.php.net/manual/en/funcref.php

pg. 52

PHP Functions with Parameters

PHP gives you option to pass your parameters inside a function. You can pass as many
as parameters your like. These parameters work like variables inside your function.
Following example takes two integer parameters and add them together and then print
them.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<html>

<head>

 <title>Writing PHP Function with Parameters</title>

</head>

<body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is : $sum";

 }

 addFunction(10, 20);

 ?>

</body>

</html>

This will display following result:
Sum of the two numbers is : 30

Passing Arguments by Reference

It is possible to pass arguments to functions by reference. This means that a reference
to the variable is manipulated by the function rather than a copy of the variable's value.

Any changes made to an argument in these cases will change the value of the original
variable. You can pass an argument by reference by adding an ampersand to the
variable name in either the function call or the function definition.

Following example depicts both the cases.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<html>

<head>

 <title>Passing Argument by Reference</title>

</head>

<body>

 <?php

 function addFive($num) {

 $num += 5;

 }

 function addSix(&$num) {

 $num += 6;

 }

 $orignum = 10;

 addFive($orignum);

pg. 53

17

18

19

20

21

22

23

24

 echo "Original Value is $orignum
";

 addSix($orignum);

 echo "Original Value is $orignum
";

 ?>

</body>

</html>

This will display following result:
Original Value is 10

Original Value is 16

PHP Functions returning value

A function can return a value using the return statement in conjunction with a value or
object. return stops the execution of the function and sends the value back to the calling
code.

You can return more than one value from a function using return array(1,2,3,4).

Following example takes two integer parameters and add them together and then returns
their sum to the calling program. Note that return keyword is used to return a value from
a function.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<html>

<head>

 <title>Writing PHP Function which returns value</title>

</head>

<body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 return $sum;

 }

 $return_value = addFunction(10, 20);

 echo "Returned value from the function : $return_value";

 ?>

</body>

</html>

This will display following result:
Returned value from the function : 30

pg. 54

Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't pass it.

Following function prints NULL in case use does not pass any value to this function.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<html>

<head>

 <title>Writing PHP Function which returns value</title>

</head>

<body>

 <?php

 function printMe($param = NULL) {

 print $param;

 }

 printMe("This is test");

 printMe();

 ?>

</body>

</html>

This will produce following result:
This is test

Dynamic Function Calls

It is possible to assign function names as strings to variables and then treat these
variables exactly as you would the function name itself. Following example depicts this
behaviour.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<html>

<head>

 <title>Dynamic Function Calls</title>

</head>

<body>

 <?php

 function sayHello() {

 echo "Hello
";

 }

 $function_holder = "sayHello";

 $function_holder();

 ?>

</body>

</html>

This will display following result:
Hello

pg. 55

Cookies
Cookies are text files stored on the client computer and they are kept of use tracking
purpose. PHP transparently supports HTTP cookies.

There are three steps involved in identifying returning users:
• Server script sends a set of cookies to the browser. For example name, age, or

identification number etc.
• Browser stores this information on local machine for future use.
• When next time browser sends any request to web server then it sends those

cookies information to the server and server uses that information to identify the
user.

This chapter will teach you how to set cookies, how to access them and how to delete
them.

The Anatomy of a Cookie
Cookies are usually set in an HTTP header (although JavaScript can also set a cookie
directly on a browser). A PHP script that sets a cookie might send headers that look
something like this:
HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-Feb-07 22:03:38 GMT;

 path=/; domain=se001php.azurewebsites.net

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path
and a domain. The name and value will be URL encoded. The expires field is an
instruction to the browser to "forget" the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this information until the
expiry date. If the user points the browser at any page that matches the path and domain
of the cookie, it will resend the cookie to the server.The browser's headers might look
something like this:
GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A PHP script will then have access to the cookie in the environmental variables
$_COOKIE or $HTTP_COOKIE_VARS[] which holds all cookie names and values.
Above cookie can be accessed using $HTTP_COOKIE_VARS["name"].

pg. 56

Setting Cookies with PHP

PHP provided setcookie() function to set a cookie. This function requires upto six
arguments and should be called before <html> tag. For each cookie this function has to
be called separately.

setcookie(name, value, expire, path, domain, security);

Here is the detail of all the arguments:
• Name: This sets the name of the cookie and is stored in an environment variable

called HTTP_COOKIE_VARS. This variable is used while accessing cookies.
• Value: This sets the value of the named variable and is the content that you

actually want to store.
• Expiry: This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970.

After this time cookie will become inaccessible. If this parameter is not set then
cookie will automatically expire when the Web Browser is closed.

• Path: This specifies the directories for which the cookie is valid. A single forward
slash character permits the cookie to be valid for all directories.

• Domain: This can be used to specify the domain name in very large domains and
must contain at least two periods to be valid. All cookies are only valid for the host
and domain which created them.

• Security: This can be set to 1 to specify that the cookie should only be sent by
secure transmission using HTTPS otherwise set to 0 which mean cookie can be
sent by regular HTTP.

Following example will create two cookies name and age these cookies will be expired
after one hour.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

<?php

 setcookie("name", "John Watkin", time()+3600, "/","", 0);

 setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

<head>

 <title>Setting Cookies with PHP</title>

</head>

<body>

 <?php echo "Set Cookies"?>

</body>

</html>

pg. 57

Accessing Cookies with PHP

PHP provides many ways to access cookies. Simplest way is to use either $_COOKIE
or $HTTP_COOKIE_VARS variables. Following example will access all the cookies set
in above example.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

<html>

<head>

 <title>Accessing Cookies with PHP</title>

</head>

<body>

 <?php

 echo $_COOKIE["name"]. "
";

 /* is equivalent to */

 echo $HTTP_COOKIE_VARS["name"]. "
";

 echo $_COOKIE["age"] . "
";

 /* is equivalent to */

 echo $HTTP_COOKIE_VARS["age"] . "
";

 ?>

</body>

</html>

You can use isset() function to check if a cookie is set or not.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

<html>

<head>

 <title>Accessing Cookies with PHP</title>

</head>

<body>

 <?php

 if(isset($_COOKIE["name"]))

 echo "Welcome " . $_COOKIE["name"] . "
";

 else

 echo "Sorry... Not recognized" . "
";

 ?>

</body>

</html>

pg. 58

Deleting Cookie with PHP

Officially, to delete a cookie you should call setcookie() with the name argument only but
this does not always work well, however, and should not be relied on.

It is safest to set the cookie with a date that has already expired:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

<?php

 setcookie("name", "", time()- 60, "/","", 0);

 setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

<head>

 <title>Deleting Cookies with PHP</title>

</head>

<body>

 <?php echo "Deleted Cookies" ?>

</body>

</html>

pg. 59

Sessions
An alternative way to make data accessible across the various pages of an entire website
is to use a PHP Session.

A session creates a file in a temporary directory on the server where registered session
variables and their values are stored. This data will be available to all pages on the site
during that visit.

The location of the temporary file is determined by a setting in the php.ini file
called session.save_path. Before using any session variable make sure you have
setup this path.

When a session is started following things happen:
• PHP first creates a unique identifier for that particular session which is a random

string of 32 hexadecimal numbers such as 3c7foj34c3jj973hjkop2fc937e3443.
• A cookie called PHPSESSID is automatically sent to the user's computer to store

unique session identification string.
• A file is automatically created on the server in the designated temporary directory

and bears the name of the unique identifier prefixed by sess_ ie
sess_3c7foj34c3jj973hjkop2fc937e3443.

When a PHP script wants to retrieve the value from a session variable, PHP
automatically gets the unique session identifier string from the PHPSESSID cookie and
then looks in its temporary directory for the file bearing that name and a validation can
be done by comparing both values.

A session ends when the user loses the browser or after leaving the site, the server will
terminate the session after a predetermined period of time, commonly 30 minutes
duration.

Starting a PHP Session

A PHP session is easily started by making a call to the session_start() function.This
function first checks if a session is already started and if none is started then it starts one.
It is recommended to put the call to session_start() at the beginning of the page.

Session variables are stored in associative array called $_SESSION[]. These variables
can be accessed during lifetime of a session.

The following example starts a session then register a variable called counter that is
incremented each time the page is visited during the session.

Make use of isset() function to check if session variable is already set or not.

pg. 60

Put this code in a test.php file and load this file many times to see the result:
Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

<?php

 session_start();

 if(isset($_SESSION['counter'])) {

 $_SESSION['counter'] += 1;

 }else {

 $_SESSION['counter'] = 1;

 }

 $msg = "You have visited this page ". $_SESSION['counter'];

 $msg .= "in this session.";

?>

<html>

<head>

 <title>Setting up a PHP session</title>

</head>

<body>

 <?php echo ($msg); ?>

</body>

</html>

It will produce the following result:
You have visited this page 1in this session.

Destroying a PHP Session

A PHP session can be destroyed by session_destroy() function. This function does not
need any argument and a single call can destroy all the session variables. If you want to
destroy a single session variable then you can use unset() function to unset a session
variable.

Here is the example to unset a single variable:
<?php

 unset($_SESSION['counter']);

?>

Here is the call which will destroy all the session variables:
<?php

 session_destroy();

?>

Turning on Auto Session

You don't need to call start_session() function to start a session when a user visits your
site if you can set session.auto_start variable to 1 in php.ini file.

pg. 61

Sessions without cookies

There may be a case when a user does not allow to store cookies on their machine. So
there is another method to send session ID to the browser.

Alternatively, you can use the constant SID which is defined if the session started. If the
client did not send an appropriate session cookie, it has the form
session_name=session_id. Otherwise, it expands to an empty string. Thus, you can
embed it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly
to another page using SID.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<?php

 session_start();

 if (isset($_SESSION['counter'])) {

 $_SESSION['counter'] = 1;

 }else {

 $_SESSION['counter']++;

 }

 $msg = "You have visited this page ". $_SESSION['counter'];

 $msg .= "in this session.";

 echo ($msg);

?>

<p>

 To continue click following link

 <a href = "nextpage.php?<?php echo htmlspecialchars(SID); ?>">

</p>

It will produce the following result:
You have visited this page 1in this session.

To continue click following link

The htmlspecialchars() may be used when printing the SID in order to prevent XSS
related attacks.

pg. 62

Sending Emails using PHP
PHP must be configured correctly in the php.ini file with the details of how your system
sends email. Open php.ini file available in /etc/ directory and find the section
headed [mail function].

Windows users should ensure that two directives are supplied. The first is called SMTP
that defines your email server address. The second is called sendmail_from which
defines your own email address.

The configuration for Windows should look something like this:
[mail function]

; For Win32 only.

SMTP = smtp.secureserver.net

; For win32 only

sendmail_from = staff01@ckleng.onmicrosoft.com

Linux users simply need to let PHP know the location of their sendmail application. The
path and any desired switches should be specified to the sendmail_path directive.

The configuration for Linux should look something like this:
[mail function]

; For Win32 only.

SMTP =

; For win32 only

sendmail_from =

; For Unix only

sendmail_path = /usr/sbin/sendmail -t -i

Now you are ready to go:

pg. 63

Sending plain text email

PHP makes use of mail() function to send an email. This function requires three
mandatory arguments that specify the recipient's email address, the subject of the the
message and the actual message additionally there are other two optional parameters.

mail(to, subject, message, headers, parameters);

Here is the description for each parameters.

No. Parameter Description

1 to

Required. Specifies the receiver / receivers of the email

2 subject Required. Specifies the subject of the email. This parameter
cannot contain any newline characters

3 message

Required. Defines the message to be sent. Each line should be
separated with a LF (\n). Lines should not exceed 70 characters

4 headers

Optional. Specifies additional headers, like From, Cc, and Bcc.
The additional headers should be separated with a CRLF (\r\n)

5 parameters

Optional. Specifies an additional parameter to the send mail
program

As soon as the mail function is called PHP will attempt to send the email then it will return
true if successful or false if it is failed.

Multiple recipients can be specified as the first argument to the mail() function in a
comma separated list.

pg. 64

Sending HTML email

When you send a text message using PHP then all the content will be treated as simple
text. Even if you will include HTML tags in a text message, it will be displayed as simple
text and HTML tags will not be formatted according to HTML syntax. But PHP provides
option to send an HTML message as actual HTML message.

While sending an email message you can specify a Mime version, content type and
character set to send an HTML email.

Example

Following example will send an HTML email message to xyz@somedomain.com
copying it to afgh@somedomain.com. You can code this program in such a way that it
should receive all content from the user and then it should send an email.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

<html>

<head>

 <title>Sending HTML email using PHP</title>

</head>

<body>

 <?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is HTML message.";

 $message .= "<h1>This is headline.</h1>";

 $header = "From:abc@somedomain.com \r\n";

 $header .= "Cc:afgh@somedomain.com \r\n";

 $header .= "MIME-Version: 1.0\r\n";

 $header .= "Content-type: text/html\r\n";

 $retval = mail ($to,$subject,$message,$header);

 if($retval == true) {

 echo "Message sent successfully...";

 }else {

 echo "Message could not be sent...";

 }

 ?>

</body>

</html>

pg. 65

Sending attachments with email

To send an email with mixed content requires to set Content-type header
to multipart/mixed. Then text and attachment sections can be specified
within boundaries.

A boundary is started with two hyphens followed by a unique number which can not
appear in the message part of the email. A PHP function md5() is used to create a 32
digit hexadecimal number to create unique number. A final boundary denoting the
email's final section must also end with two hyphens.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

<?php

 // request variables // important

 $from = $_REQUEST["from"];

 $emaila = $_REQUEST["emaila"];

 $filea = $_REQUEST["filea"];

 if ($filea) {

function mail_attachment (

 $from , $to, $subject, $message, $attachment){

 $fileatt = $attachment; // Path to the file

 $fileatt_type = "application/octet-stream"; // File Type

 $start = strrpos($attachment, '/') == -1 ?

 strrpos($attachment, '//') : strrpos($attachment, '/')+1;

 $fileatt_name = substr($attachment, $start,

 strlen($attachment)); // Filename that will be used for the

 file as the attachment

 $email_from = $from; // Who the email is from

 $subject = "New Attachment Message";

 $email_subject = $subject; // The Subject of the email

 $email_txt = $message; // Message that the email has in it

 $email_to = $to; // Who the email is to

 $headers = "From: ".$email_from;

 $file = fopen($fileatt,'rb');

 $data = fread($file,filesize($fileatt));

 fclose($file);

 $msg_txt=

 "\n\n You have recieved a new attachment message from $from";

 $semi_rand = md5(time());

 $mime_boundary = "==Multipart_Boundary_x{$semi_rand}x";

 $headers .= "\nMIME-Version: 1.0\n" .

 "Content-Type: multipart/mixed;\n" .

 "boundary=\"{$mime_boundary}\"";

 $email_txt .= $msg_txt;

 $email_message .=

 "This is a multi-part message in MIME format.\n\n" .

pg. 66

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

 "--{$mime_boundary}\n" .

 "Content-Type:text/html; charset = \"iso-8859-1\"\n" .

 "Content-Transfer-Encoding: 7bit\n\n" .

 $email_txt . "\n\n";

 $data = chunk_split(base64_encode($data));

 $email_message .= "--{$mime_boundary}\n" .

 "Content-Type: {$fileatt_type};\n" .

 " name = \"{$fileatt_name}\"\n" .

 //"Content-Disposition: attachment;\n" .

 //" filename = \"{$fileatt_name}\"\n" .

 //"Content-Transfer-Encoding:

 base64\n\n" . $data . "\n\n" . "--{$mime_boundary}--\n";

 $ok = mail($email_to, $email_subject, $email_message, $headers);

 if($ok) {

 echo "File Sent Successfully.";

 unlink($attachment); // delete a file after attachment sent.

 }else {

 die("Sorry but the email could not be sent. Please go back and

try again!");

 }

 }

 move_uploaded_file($_FILES["filea"]["tmp_name"],

 'temp/'.basename($_FILES['filea']['name']));

 mail_attachment("$from", "youremailaddress@gmail.com",

 "subject", "message", ("temp/".$_FILES["filea"]["name"]));

 }

?>

<html>

<head>

 <script language = "javascript" type = "text/javascript">

 function CheckData45() {

 with(document.filepost) {

 if(filea.value ! = "") {

 document.getElementById('one').innerText =

 "Attaching File ... Please Wait";

 }

 }

 }

 </script>

</head>

<body>

 <table width = "100%" height = "100%" border = "0"

 cellpadding = "0" cellspacing = "0">

 <tr>

 <td align = "center">

 <form name = "filepost" method = "post" action = "file.php"

 enctype = "multipart/form-data" id = "file">

 <table width = "300" border = "0" cellspacing = "0"

 cellpadding = "0">

 <tr valign = "bottom">

 <td height = "20">Your Name:</td>

pg. 67

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

 </tr>

 <tr>

 <td><input name = "from" type = "text"

 id = "from" size = "30">

 </td>

 </tr>

 <tr valign = "bottom">

 <td height = "20">Your Email Address:</td>

 </tr>

 <tr>

 <td class = "frmtxt2"><input name = "emaila"

 type = "text" id = "emaila" size = "30"></td>

 </tr>

 <tr>

 <td height = "20" valign = "bottom">Attach File:</td>

 </tr>

 <tr valign = "bottom">

 <td valign = "bottom"><input name = "filea"

 type = "file" id = "filea" size = "16">

 </td>

 </tr>

 <tr>

 <td height = "40" valign = "middle">

 <input name = "Reset2" type = "reset" id = "Reset2"

 value = "Reset">

 <input name = "Submit2" type = "submit"

 value = "Submit"

 onClick = "return CheckData45()">

 </td>

 </tr>

 </table>

 </form>

 <center>

 <table width = "400">

 <tr>

 <td id = "one"></td>

 </tr>

 </table>

 </center>

 </td>

 </tr>

 </table>

</body>

</html>

pg. 68

File Uploading
A PHP script can be used with a HTML form to allow users to upload files to the server.
Initially files are uploaded into a temporary directory and then relocated to a target
destination by a PHP script.

Information in the phpinfo.php page describes the temporary directory that is used for
file uploads as upload_tmp_dir and the maximum permitted size of files that can be
uploaded is stated as upload_max_filesize. These parameters are set into PHP
configuration file php.ini

The process of uploading a file follows these steps:
• The user opens the page containing a HTML form featuring a text files, a browse

button and a submit button.
• The user clicks the browse button and selects a file to upload from the local PC.
• The full path to the selected file appears in the text filed then the user clicks the

submit button.
• The selected file is sent to the temporary directory on the server.
• The PHP script that was specified as the form handler in the form's action attribute

checks that the file has arrived and then copies the file into an intended directory.
• The PHP script confirms the success to the user.

As usual when writing files, it is necessary for both temporary and final locations to have
permissions set that enable file writing. If either is set to be read-only then process will
fail.

An uploaded file could be a text file or image file or any document.

Creating an upload form

The following HTM code below creates an uploader form. This form is having method
attribute set to post and enctype attribute is set to multipart/form-data

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

<?php

 if(isset($_FILES['image'])){

 $errors= array();

 $file_name = $_FILES['image']['name'];

 $file_size =$_FILES['image']['size'];

 $file_tmp =$_FILES['image']['tmp_name'];

 $file_type=$_FILES['image']['type'];

 $file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));

 $extensions= array("jpeg","jpg","png");

 if(in_array($file_ext,$extensions)=== false){

 $errors[]=

 "extension not allowed, please choose a JPEG or PNG file.";

 }

 if($file_size > 2097152){

pg. 69

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 $errors[]='File size must be excately 2 MB';

 }

 if(empty($errors)==true){

 move_uploaded_file($file_tmp,"images/".$file_name);

 echo "Success";

 }else{

 print_r($errors);

 }

 }

?>

<html>

<body>

 <form action="" method="POST" enctype="multipart/form-data">

 <input type="file" name="image" />

 <input type="submit"/>

 </form>

</body>

</html>

It will produce the following result:

Creating an upload script

There is one global PHP variable called $_FILES. This variable is an associate double
dimension array and keeps all the information related to uploaded file. So if the value
assigned to the input's name attribute in uploading form was file, then PHP would create
following five variables:

• $_FILES['file']['tmp_name']: the uploaded file in the temporary directory on the
web server.

• $_FILES['file']['name']: the actual name of the uploaded file.
• $_FILES['file']['size']: the size in bytes of the uploaded file.
• $_FILES['file']['type']: the MIME type of the uploaded file.
• $_FILES['file']['error']: the error code associated with this file upload.

pg. 70

Example

Below example should allow upload images and gives back result as uploaded file
information.

Line Code
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

<?php

 if(isset($_FILES['image'])){

 $errors= array();

 $file_name = $_FILES['image']['name'];

 $file_size = $_FILES['image']['size'];

 $file_tmp = $_FILES['image']['tmp_name'];

 $file_type = $_FILES['image']['type'];

 $file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));

 $extensions= array("jpeg","jpg","png");

 if(in_array($file_ext,$extensions)=== false){

 $errors[]=

 "extension not allowed, please choose a JPEG or PNG file.";

 }

 if($file_size > 2097152) {

 $errors[]='File size must be excately 2 MB';

 }

 if(empty($errors)==true) {

 move_uploaded_file($file_tmp,"images/".$file_name);

 echo "Success";

 }else{

 print_r($errors);

 }

 }

?>

<html>

<body>

 <form action = "" method = "POST" enctype = "multipart/form-data">

 <input type = "file" name = "image" />

 <input type = "submit"/>

 Sent file: <?php echo $_FILES['image']['name']; ?>

 File size: <?php echo $_FILES['image']['size']; ?>

 File type: <?php echo $_FILES['image']['type'] ?>

 </form>

</body>

</html>

It will produce the following result:

pg. 71

Coding Standard
Every company follows a different coding standard based on their best practices. Coding
standard is required because there may be many developers working on different
modules so if they will start inventing their own standards then source will become very
un-manageable and it will become difficult to maintain that source code in future.

Here are several reasons why to use coding specifications:
• Your peer programmers have to understand the code you produce. A coding

standard acts as the blueprint for all the team to decipher the code.
• Simplicity and clarity achieved by consistent coding saves you from common

mistakes.
• If you revise your code after some time then it becomes easy to understand that

code.
• Its industry standard to follow a particular standard to being more quality in

software.

There are few guidelines which can be followed while coding in PHP.
• Indenting and Line Length: Use an indent of 4 spaces and don't use any tab

because different computers use different setting for tab. It is recommended to
keep lines at approximately 75-85 characters long for better code readability.

• Control Structures: These include if, for, while, switch, etc. Control statements
should have one space between the control keyword and opening parenthesis, to
distinguish them from function calls. You are strongly encouraged to always use
curly braces even in situations where they are technically optional.

Examples
if ((condition1) || (condition2)) {

 action1;

}elseif ((condition3) && (condition4)) {

 action2;

}else {

 default action;

}

You can write switch statements as follows:
switch (condition) {

 case 1:

 action1;

 break;

 case 2:

 action2;

 break;

 default:

 default action;

 break;

}

• Function Calls: Functions should be called with no spaces between the function
name, the opening parenthesis, and the first parameter; spaces between commas

pg. 72

and each parameter, and no space between the last parameter, the closing
parenthesis, and the semicolon. Here's an example:

$var = foo($bar, $baz, $quux);

• Function Definitions: Function declarations follow the "BSD/Allman style":

function fooFunction($arg1, $arg2 = '') {

 if (condition) {

 statement;

 }

 return $val;

}

• Comments: C style comments (/* */) and standard C++ comments (//) are both
fine. Use of Perl/shell style comments (#) is discouraged.

• PHP Code Tags: Always use <?php ?> to delimit PHP code, not the <? ?>
shorthand. This is required for PHP compliance and is also the most portable way
to include PHP code on differing operating systems and setups.

• Variable Names:
o Use all lower case letters

o Use '_' as the word separator.

o Global variables should be prepended with a 'g'.

o Global constants should be all caps with '_' separators.

o Static variables may be prepended with 's'.

• Make Functions Reentrant: Functions should not keep static variables that
prevent a function from being reentrant.

• Alignment of Declaration Blocks: Block of declarations should be aligned.

• One Statement Per Line: There should be only one statement per line unless the
statements are very closely related.

• Short Methods or Functions: Methods should limit themselves to a single page
of code.

There could be many more points which should be considered while writing your PHP
program. Over all intention should be to be consistent throughout of the code
programming and it will be possible only when you will follow any coding standard. You
can device your own standard if you like something different.

